Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3aR,8aR)-2,2,6,6-Tetramethyl-4,4,8,8tetraphenyltetrahydro-1,3-dioxolo-[4,5-e][1,3,2]dioxasilepine

Yousef M. Hijji,^a Paul F. Hudrlik,^b Anne M. Hudrlik,^b Ray J. Butcher^{b*} and Jerry P. Jasinski^c

^aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 9 December 2008; accepted 11 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.054; wR factor = 0.119; data-to-parameter ratio = 7.3.

The title compound, $C_{33}H_{34}O_4Si$, is a dioxasilepine compound, an effective chiral dopant for the determination of high helical twisting powers in liquid crystals. Its structure consists of a five-membered dioxolo ring fused to a seven-membered dioxasilepine ring which contains two sets of phenyl rings in a twisted butterfly shape attached to the two Csp^3 atoms in the ring opposite each other. Two methyl groups are attached to the Si atom in the ring and two additional methyl groups are attached to the Csp^3 atom in the dioxolo ring (one of which is disordered) and which lies in an envelope pattern. The dihedral angles between the mean planes of the phenyl ring pairs are 85.9 (2) and 83.5 (1)°. The dihedral angles between the mean planes of the dioxolo ring and the two pairs of butterfly shaped phenyl rings are 46.2 (1), 67.7 (1), 35.6 (7) and 83.5 (1)°.

Related literature

For a related structure, see: Madison et al. (1998). For dioxasilepines as chiral dopants in liquid crystals, see: Kuball & Hofer (2000); Kuball et al. (1997). For puckering parameters and pseudo rotation parameters, see: Cremer & Pople (1975); Rao et al. (1981).

Experimental

Crystal data C33H34O4Si

Data collection

Siemans P2 diffractometer Absorption correction: refined from ΔF (SHELXL97; Sheldrick, 2008) $T_{\min} = 0.786, T_{\max} = 0.982$

2819 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.119$ S = 1.042819 reflections 388 parameters

2819 independent reflections 1693 reflections with $I > 2\sigma(I)$ 3 standard reflections every 97 reflections intensity decay: none

V = 2952.4 (9) Å³

Mo $K\alpha$ radiation

 $\mu = 0.11 \text{ mm}^{-1}$

T = 293 (2) K $0.56 \times 0.32 \times 0.16 \text{ mm}$

Z = 4

14 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: XSCANS (Siemens, 2000); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2455).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1254-1358.

Kuball, H. G. & Hofer, T. (2000). Chirality, 12, 278-286.

Kuball, H. G., Weiss, B., Beck, A. K. & Seebach, D. (1997). Helv. Chim. Acta, 80, 2507-2514.

Madison, J., Clausen, R. P., Hazell, R. G., Jacobson, H. J., Bols, M. & Perry, C. C. (1998). Acta Chem. Scand., 52, 1165-1170.

Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2009). E65, o135 [doi:10.1107/S160053680804227X]

(3aR,8aR)-2,2,6,6-Tetramethyl-4,4,8,8-tetraphenyltetrahydro-1,3-dioxolo[4,5-e][1,3,2]dioxasilepine

Y. M. Hijji, P. F. Hudrlik, A. M. Hudrlik, R. J. Butcher and J. P. Jasinski

Comment

Dioxasilepine compounds have been found to be effective chiral dopants for the determination of high helical twisting powers in liquid crystals (Kuball *et al.* 2000 and 1997). We have synthesized a new related structure and its crystal structure is reported.

The title compound, $C_{33}H_{34}O_4Si$, consists of a 5-membered oxolo ring fused to a 7-membered dioxasilepine ring which contains two sets of phenyl rings in a twisted butterfly shape attached to the two sp^3 carbon atoms in the ring opposite each other (Fig. 1). Two methyl groups are attached to the silicon atom in the ring and two additional methyl groups are attached to the sp^3 carbon atom in the dioxolo ring (one of which is disordered at C4) which lies in an envelope pattern on C1 with pseudo rotation parameters P and Tau(*M*) of 172° and 18.5°, respectively (Rao *et al.*, 1981) for the refine bond C1—O2 [puckering parameters $\theta(2) = 0.1695$ Å, Phi(2) = 80.2586° (Cremer & Pople, 1975)]. The dihedral angle between the mean planes of phenyl rings C11–C16 and C21–C26 is 85.9 (2)° and between phenyl rings C31–C36 and C41–C46 is 83.5 (1)°. Dihedreal angles between the mean planes of the dioxolo ring and the two butterfly shaped phenyl rings are 46.2 (1)° [C11–C16], 67.7 (1)° [C21–C26], 35.6 (7)° [C31–C36] and 83.5 (1)° [C41–C46], respectively.

Crystal packing is influenced by intermolecular C5A—H5A···*Cg*3 [3.628 (1) Å, *x*, *y*, *z*] and C4A—H4AA···*Cg*5 [3.757 (7) Å, *x*, *y*, *z*] π ring interactions where *Cg*3 and *Cg*5 = center of gravity of phenyl rings C21–C26 and C41–46, respectively (Fig. 2).

Experimental

The title compound was synthesized by adding 0.13 g (1.06 mmol) of dimethylaminopyridine to a solution of 0.50 g (1.07 mmol) of (-)-*trans*- $\alpha_{,}\alpha'$ -(dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) (TADDOL) in 20 ml of anhydrous ether (distilled from Na/benzophenone) under nitrogen atmosphere at room temperature. Then 0.145 g of imidazole (2.14 mmol) was added. The mixture was stirred to get a homogeneous solution. A solution of 0.138 g (1.07 mmol) dichlorodimethylsilane (distilled from CaH₂) in 40 ml of anhydrous ether was added dropwise to the above solution. The mixture was stirred overnight under a nitrogen atmosphere. A white precipitate formed. The solid was filtered off through a sintered glass funnel under a blanket of nitrogen gas. Slow evaporation of the solvent under a stream of nitrogen gave white crystals (0.35 g; 62.5%). m.p 483–485 K. ¹H NMR (CDCl₃, CH₂Cl₂ standard, 300 MHz) δ 7.62, 7.60 (appears as d, J = 8 Hz, 4 H, Ar), 7.25–7.05 (m, 16 H, Ar), 5.15 (s, 2H, CH(OR), 0.52 (s, 6 H, CMe₂), -0.25 (s, 6 H, SiMe₂). ¹³C NMR (CDCl₃, 75 MHz) δ 147.5, 143.1, 129.0, 127.9, 127.2, 127.1, 126.81, 126.76, 113.9, 82.2, 81.6, 27.0, -0.13.

Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å and $U_{iso}(H) = 0.62-2.00U_{eq}(C)$. The methyl carbon, C4, bonded to C1 is disordered with C4A at 0.38 (6) and C4B at 0.62 (6) partial occupancy. Since there was no atom present heavier that Si the absolute configuration could not be determined by X-ray methods. Hence the Friedel pairs were averaged.

Figures

Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids. Disordered aton C4A is shown with 0.38 (6) partial occupancy.

Fig. 2. Packing diagram of the title compound, viewed down the *a* axis.

(3aR,8aR)-2,2,6,6-Tetramethyl-4,4,8,8-tetraphenyltetrahydro-1,3- dioxolo[4,5-e][1,3,2]dioxasilepine

Crystal data	
C ₃₃ H ₃₄ O ₄ Si	$F_{000} = 1112$
$M_r = 522.69$	$D_{\rm x} = 1.176 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 26 reflections
a = 10.008 (2) Å	$\theta = 4.2 - 10.5^{\circ}$
b = 17.081 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 17.271 (3) Å	T = 293 (2) K
$V = 2952.4 (9) \text{ Å}^3$	Block, colorless
Z = 4	$0.56 \times 0.32 \times 0.16 \text{ mm}$
Data collection	
Siemans P2	

diffractometer	1693 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.6^{\circ}$

T = 293(2) K	$h = 0 \rightarrow 10$
ω scans	$k = 0 \rightarrow 20$
Absorption correction: part of the refinement model (ΔF) (SHELXL97; Sheldrick, 2008)	$l = 0 \rightarrow 20$
$T_{\min} = 0.786, \ T_{\max} = 0.982$	3 standard reflections
2819 measured reflections	every 97 reflections
2819 independent reflections	intensity decay: none
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0282P)^2 + 0.814P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2819 reflections	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
388 parameters	$\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$
14 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Experimental. Sheldrick, G.M. (anon) SHELX97 Release 97-2 (1998) I/sigma threshold for reflections = 5.000 Delta(U)/lambda**2 = 0.000 Highest even order spherical harmonic = 6 Highest odd order spherical harmonic = 3

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Si	0.33141 (17)	0.47321 (9)	0.20896 (10)	0.0592 (5)	
01	0.1516 (4)	0.7144 (2)	0.1711 (2)	0.0552 (10)	
O2	0.3460 (4)	0.73928 (18)	0.2371 (2)	0.0566 (10)	
O3	0.3023 (3)	0.5239 (2)	0.1311 (2)	0.0503 (9)	
O4	0.3509 (4)	0.53154 (19)	0.2825 (2)	0.0577 (10)	
C1	0.3489 (5)	0.6580 (3)	0.2198 (3)	0.0467 (14)	
H1A	0.4140	0.6486	0.1785	0.08 (2)*	

C2	0.2078 (5)	0.6398 (3)	0.1892 (3)	0.0451 (14)	
H2A	0.1554	0.6157	0.2308	0.038 (13)*	
C3	0.2373 (5)	0.7744 (3)	0.1978 (4)	0.0571 (16)	
C4A	0.1589 (18)	0.806 (2)	0.2655 (13)	0.112 (8)	0.52 (5)
H4AA	0.1480	0.7661	0.3038	0.168*	0.52 (5)
H4AB	0.0727	0.8236	0.2481	0.168*	0.52 (5)
H4AC	0.2063	0.8498	0.2878	0.168*	0.52 (5)
C4B	0.1677 (18)	0.8414 (12)	0.2382 (16)	0.069 (7)	0.48 (5)
H4BA	0.1374	0.8245	0.2882	0.103*	0.48 (5)
H4BB	0.0926	0.8580	0.2078	0.103*	0.48 (5)
H4BC	0.2289	0.8842	0.2442	0.103*	0.48 (5)
C5	0.2928 (8)	0.8209 (4)	0.1269 (5)	0.125 (3)	
H5A	0.3348	0.7853	0.0914	0.188*	
H5B	0.3572	0.8586	0.1445	0.188*	
H5C	0.2207	0.8474	0.1013	0.188*	
C6	0.1940 (9)	0.4087 (5)	0.2353 (5)	0.101 (3)	
H6A	0.1167	0.4395	0.2479	0.14 (4)*	
H6B	0.2191	0.3778	0.2793	0.16 (4)*	
H6C	0.1736	0.3748	0.1925	0.15 (4)*	
C7	0.4856 (8)	0.4183 (5)	0.1872 (5)	0.096 (3)	
H7A	0.5578	0.4544	0.1790	0.15 (4)*	
H7B	0.4726	0.3875	0.1413	0.16 (4)*	
H7C	0.5067	0 3845	0.2298	0.21 (5)*	
C8	0.2050 (5)	0.5850 (3)	0.1171 (3)	0.0446 (14)	
C9	0.3913(5)	0.6119(3)	0.2929(3)	0.0475 (14)	
C11	0.05712(0)	0.5469 (3)	0.1056(3)	0.0460(14)	
C12	-0.0482(6)	0.5767(4)	0.1375(3)	0.0620(16)	
H12A	-0.0448	0.6217	0.1677	0.0020(10)	
C13	-0.1702(7)	0.5395 (4)	0 1244 (4)	0.083(2)	
H13A	-0.2479	0.5601	0.1458	0.063 (18)*	
C14	-0.1768(8)	0.3001 0.4733(4)	0.0805 (4)	0.009(10)	
H144	-0.2585	0.4486	0.0724	0.12 (3)*	
C15	-0.0627(7)	0.4432(4)	0.0724	0.12(3)	
H15A	-0.0665	0.3070	0.0184	0.077(2) 0.12(3)*	
C16	0.0005	0.3979 0.4803(4)	0.0104	0.12(5)	
H16A	0.0374 (0)	0.4601	0.0371	0.0023(10)	
C21	0.1340	0.4001	0.0371	$0.052(10)^{\circ}$	
C21	0.2408(0) 0.1578(8)	0.0230(3)	0.0434(3)	0.0508(13)	
	0.1378 (8)	0.0732 (3)	0.0024 (4)	0.0098 (18)	
П22А С22	0.0091 0.1045 (10)	0.0740 0.7154 (5)	-0.0611(4)	$0.07(2)^{\circ}$	
U22 A	0.1345 (10)	0.7154 (5)	-0.0876	0.092(2)	
H23A	0.1310 0.2252(11)	0.7432	-0.0870	$0.10(4)^{\circ}$	
C24	0.5255 (11)	0.7130 (3)	-0.0800 (4)	0.100(3)	
П24А С25	0.3317 0.4167(0)	0.7429	-0.1287 -0.0468(5)	$0.11(3)^{-1}$	
U25 H25A	0.4107 (9)	0.0078(3)	-0.0408(3)	0.101(3) 0.13(2)*	
п23A С26	0.2791 (7)	0.0038	-0.003/	$0.13(3)^{*}$	
U20	0.3781(7)	0.5022	0.0176(4)	0.070(2)	
П20A	0.4397	0.3932	0.0452	$0.09(2)^{*}$	
(31	0.5427(5)	0.014/(3)	0.3048 (3)	0.04/4 (14)	
C32	0.6025 (7)	0.5547 (4)	0.3465 (4)	0.0711 (19)	

H32A	0.5510	0.5132	0.3646	0.09 (2)*
C33	0.7394 (7)	0.5563 (4)	0.3613 (4)	0.084 (2)
H33A	0.7790	0.5154	0.3885	0.08 (2)*
C34	0.8153 (7)	0.6169 (5)	0.3363 (4)	0.081 (2)
H34A	0.9064	0.6180	0.3469	0.067 (18)*
C35	0.7572 (6)	0.6772 (4)	0.2951 (4)	0.0707 (19)
H35A	0.8095	0.7186	0.2776	0.07 (2)*
C36	0.6220 (6)	0.6763 (3)	0.2797 (3)	0.0545 (15)
H36A	0.5836	0.7173	0.2522	0.07 (2)*
C41	0.3189 (6)	0.6414 (3)	0.3661 (3)	0.0532 (14)
C42	0.2127 (6)	0.6020 (5)	0.3967 (4)	0.0684 (19)
H42A	0.1834	0.5561	0.3731	0.07 (2)*
C43	0.1473 (8)	0.6293 (6)	0.4625 (4)	0.094 (2)
H43A	0.0743	0.6018	0.4818	0.10 (2)*
C44	0.1888 (9)	0.6958 (6)	0.4992 (5)	0.103 (3)
H44A	0.1450	0.7138	0.5432	0.13 (3)*
C45	0.2967 (8)	0.7356 (5)	0.4695 (4)	0.089 (2)
H45A	0.3262	0.7810	0.4939	0.08 (2)*
C46	0.3619 (7)	0.7092 (4)	0.4038 (4)	0.0720 (18)
H46A	0.4349	0.7368	0.3846	0.10 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Si	0.0568 (10)	0.0456 (8)	0.0752 (12)	0.0000 (9)	-0.0127 (10)	0.0017 (10)
01	0.048 (2)	0.050 (2)	0.067 (2)	0.003 (2)	-0.016 (2)	-0.0028 (19)
O2	0.062 (3)	0.0385 (19)	0.069 (3)	-0.006 (2)	-0.022 (2)	-0.0059 (19)
O3	0.051 (2)	0.0468 (19)	0.053 (2)	0.0058 (19)	0.0000 (18)	-0.003 (2)
O4	0.069 (2)	0.050 (2)	0.054 (2)	-0.007 (2)	-0.005 (2)	0.005 (2)
C1	0.051 (4)	0.042 (3)	0.047 (3)	-0.002 (3)	0.000 (3)	-0.006 (3)
C2	0.043 (3)	0.046 (3)	0.047 (4)	-0.003 (3)	-0.003 (3)	-0.001 (3)
C3	0.045 (3)	0.046 (3)	0.079 (5)	0.004 (3)	-0.026 (3)	-0.019 (4)
C4A	0.096 (9)	0.102 (12)	0.138 (11)	0.034 (9)	-0.031 (8)	-0.040 (9)
C4B	0.071 (8)	0.045 (8)	0.090 (11)	0.016 (7)	-0.015 (7)	-0.018 (7)
C5	0.133 (7)	0.096 (6)	0.147 (7)	-0.046 (6)	-0.065 (7)	0.059 (6)
C6	0.102 (7)	0.088 (5)	0.114 (7)	-0.041 (6)	-0.035 (5)	0.024 (6)
C7	0.095 (6)	0.089 (5)	0.105 (7)	0.045 (5)	-0.030 (5)	-0.024 (6)
C8	0.043 (3)	0.047 (3)	0.044 (3)	0.001 (3)	-0.007 (3)	-0.003 (3)
C9	0.046 (3)	0.053 (3)	0.043 (3)	0.001 (3)	-0.007 (3)	0.012 (3)
C11	0.047 (3)	0.050 (4)	0.041 (3)	-0.003 (3)	-0.002 (3)	0.006 (3)
C12	0.053 (4)	0.064 (4)	0.069 (4)	-0.013 (3)	0.004 (3)	-0.022 (4)
C13	0.048 (4)	0.107 (6)	0.094 (5)	-0.014 (4)	0.015 (4)	-0.020 (5)
C14	0.071 (5)	0.094 (5)	0.072 (5)	-0.030 (5)	0.005 (4)	-0.024 (4)
C15	0.074 (5)	0.087 (5)	0.070 (4)	-0.018 (4)	0.001 (4)	-0.023 (4)
C16	0.056 (4)	0.073 (4)	0.059 (4)	-0.002 (4)	0.008 (3)	-0.021 (4)
C21	0.054 (4)	0.052 (4)	0.046 (3)	-0.005 (3)	0.004 (3)	-0.010 (3)
C22	0.072 (5)	0.074 (4)	0.063 (4)	-0.011 (4)	0.003 (4)	0.017 (4)
C23	0.118 (7)	0.095 (5)	0.062 (5)	-0.018 (6)	0.000 (5)	0.017 (5)

C24	0.150 (9)	0.102 (6)	0.047 (5)	-0.054 (7)	0.009 (6)	0.003 (4)
C25	0.092 (7)	0.134 (8)	0.078 (6)	-0.037 (6)	0.031 (5)	-0.013 (6)
C26	0.061 (5)	0.086 (5)	0.064 (4)	-0.016 (4)	0.021 (4)	0.000 (4)
C31	0.048 (3)	0.048 (3)	0.047 (3)	0.009 (3)	-0.005 (3)	-0.005 (3)
C32	0.077 (5)	0.079 (5)	0.057 (4)	0.003 (4)	-0.011 (4)	0.011 (4)
C33	0.080 (6)	0.079 (5)	0.093 (6)	0.024 (5)	-0.028 (5)	0.008 (5)
C34	0.048 (5)	0.114 (6)	0.080 (5)	0.023 (5)	-0.017 (4)	-0.026 (5)
C35	0.041 (4)	0.089 (5)	0.082 (5)	-0.002 (4)	-0.001 (4)	-0.009 (5)
C36	0.048 (4)	0.055 (4)	0.060 (4)	0.004 (3)	-0.001 (3)	-0.001 (4)
C41	0.045 (3)	0.068 (4)	0.047 (4)	0.007 (3)	-0.002 (3)	0.003 (3)
C42	0.063 (5)	0.095 (5)	0.048 (4)	-0.002 (4)	0.007 (3)	0.005 (4)
C43	0.063 (5)	0.146 (8)	0.075 (6)	0.002 (6)	0.012 (5)	0.005 (6)
C44	0.076 (6)	0.154 (9)	0.078 (6)	0.026 (6)	0.026 (5)	-0.006 (6)
C45	0.112 (7)	0.096 (6)	0.060 (5)	0.020 (5)	-0.002 (5)	-0.031 (4)
C46	0.073 (5)	0.078 (4)	0.064 (4)	0.000 (4)	0.007 (4)	-0.013 (4)

Geometric parameters (Å, °)

Si—O4	1.626 (4)	C13—C14	1.363 (8)
Si—O3	1.626 (4)	C13—H13A	0.9300
Si—C6	1.820 (7)	C14—C15	1.370 (9)
Si—C7	1.845 (7)	C14—H14A	0.9300
O1—C3	1.413 (6)	C15—C16	1.374 (8)
O1—C2	1.428 (6)	C15—H15A	0.9300
O2—C3	1.416 (6)	C16—H16A	0.9300
O2—C1	1.420 (5)	C21—C22	1.366 (8)
O3—C8	1.448 (6)	C21—C26	1.390 (8)
O4—C9	1.442 (6)	C22—C23	1.363 (9)
C1—C2	1.539 (7)	C22—H22A	0.9300
С1—С9	1.548 (6)	C23—C24	1.378 (12)
C1—H1A	0.9800	С23—Н23А	0.9300
C2—C8	1.557 (7)	C24—C25	1.381 (11)
C2—H2A	0.9800	C24—H24A	0.9300
C3—C4B	1.511 (8)	C25—C26	1.387 (9)
C3—C4A	1.511 (9)	С25—Н25А	0.9300
C3—C5	1.561 (9)	C26—H26A	0.9300
С4А—Н4АА	0.9600	C31—C36	1.387 (7)
С4А—Н4АВ	0.9600	C31—C32	1.388 (7)
С4А—Н4АС	0.9600	C32—C33	1.394 (9)
C4B—H4BA	0.9600	C32—H32A	0.9300
C4B—H4BB	0.9600	C33—C34	1.355 (9)
C4B—H4BC	0.9600	С33—Н33А	0.9300
С5—Н5А	0.9600	C34—C35	1.380 (9)
С5—Н5В	0.9600	C34—H34A	0.9300
С5—Н5С	0.9600	C35—C36	1.379 (8)
С6—Н6А	0.9600	С35—Н35А	0.9300
С6—Н6В	0.9600	С36—Н36А	0.9300
С6—Н6С	0.9600	C41—C42	1.365 (8)
С7—Н7А	0.9600	C41—C46	1.396 (8)

С7—Н7В	0.9600	C42—C43	1.392 (9)
С7—Н7С	0.9600	C42—H42A	0.9300
C8—C11	1.534 (7)	C43—C44	1.366 (10)
C8—C21	1.537 (7)	C43—H43A	0.9300
C9—C31	1.530 (7)	C44—C45	1.375 (10)
C9—C41	1.542 (7)	C44—H44A	0.9300
C11—C12	1.380 (7)	C45—C46	1.385 (9)
C11—C16	1.385 (7)	C45—H45A	0.9300
C12—C13	1.396 (8)	C46—H46A	0.9300
C12—H12A	0.9300		
O4—Si—O3	109.93 (17)	C12—C11—C8	123.0 (5)
O4—Si—C6	105.5 (4)	C16—C11—C8	119.2 (5)
O3—Si—C6	113.2 (3)	C11—C12—C13	120.2 (6)
O4—Si—C7	111.8 (3)	C11—C12—H12A	119.9
O3—Si—C7	104.6 (3)	C13—C12—H12A	119.9
C6—Si—C7	112.1 (5)	C14—C13—C12	120.7 (6)
C3—O1—C2	109.7 (4)	C14—C13—H13A	119.7
C3—O2—C1	109.1 (4)	С12—С13—Н13А	119.7
C8—O3—Si	130.0 (3)	C13—C14—C15	119.8 (7)
C9—O4—Si	135.6 (3)	C13—C14—H14A	120.1
O2—C1—C2	104.6 (4)	C15—C14—H14A	120.1
O2—C1—C9	109.3 (4)	C14—C15—C16	119.7 (6)
C2—C1—C9	115.4 (4)	C14—C15—H15A	120.1
O2—C1—H1A	109.1	C16—C15—H15A	120.1
C2—C1—H1A	109.1	C15—C16—C11	121.9 (6)
C9—C1—H1A	109.1	С15—С16—Н16А	119.1
O1—C2—C1	104.8 (4)	C11—C16—H16A	119.1
O1—C2—C8	110.7 (4)	C22—C21—C26	118.7 (6)
C1—C2—C8	114.4 (4)	C22—C21—C8	121.5 (5)
O1—C2—H2A	108.9	C26—C21—C8	119.9 (6)
C1—C2—H2A	108.9	C23—C22—C21	122.2 (8)
C8—C2—H2A	108.9	C23—C22—H22A	118.9
01—C3—O2	108.4 (4)	C21—C22—H22A	118.9
O1—C3—C4B	114.8 (9)	C22—C23—C24	119.7 (9)
O2—C3—C4B	116.9 (10)	С22—С23—Н23А	120.2
O1—C3—C4A	101.5 (12)	C24—C23—H23A	120.2
O2—C3—C4A	100.4 (13)	C23—C24—C25	119.3 (8)
C4B—C3—C4A	29.4 (9)	C23—C24—H24A	120.4
O1—C3—C5	109.3 (5)	C25—C24—H24A	120.4
O2—C3—C5	108.6 (5)	C24—C25—C26	120.6 (8)
C4B—C3—C5	98.0 (13)	C24—C25—H25A	119.7
C4A—C3—C5	127.4 (18)	С26—С25—Н25А	119.7
С3—С4А—Н4АА	109.5	C25—C26—C21	119.5 (8)
С3—С4А—Н4АВ	109.5	С25—С26—Н26А	120.3
С3—С4А—Н4АС	109.5	C21—C26—H26A	120.3
C3—C4B—H4BA	109.5	C36—C31—C32	118.4 (5)
C3—C4B—H4BB	109.5	C36—C31—C9	123.3 (5)
H4BA—C4B—H4BB	109.5	C32—C31—C9	118.3 (5)
C3—C4B—H4BC	109.5	C31—C32—C33	120.3 (7)

H4BA—C4B—H4BC	109.5	C31—C32—H32A	119.9
H4BB—C4B—H4BC	109.5	C33—C32—H32A	119.9
С3—С5—Н5А	109.5	C34—C33—C32	120.5 (7)
C3—C5—H5B	109.5	С34—С33—Н33А	119.7
H5A—C5—H5B	109.5	С32—С33—Н33А	119.7
C3—C5—H5C	109.5	C33—C34—C35	119.9 (7)
H5A—C5—H5C	109.5	С33—С34—Н34А	120.0
H5B—C5—H5C	109.5	C35—C34—H34A	120.0
Si—C6—H6A	109.5	C36—C35—C34	120.3 (7)
Si—C6—H6B	109.5	С36—С35—Н35А	119.9
H6A—C6—H6B	109.5	С34—С35—Н35А	119.9
Si—C6—H6C	109.5	C35—C36—C31	120.7 (6)
Н6А—С6—Н6С	109.5	С35—С36—Н36А	119.7
Н6В—С6—Н6С	109.5	C31—C36—H36A	119.7
Si—C7—H7A	109.5	C42—C41—C46	118.0 (6)
Si—C7—H7B	109.5	C42—C41—C9	121.4 (6)
H7A—C7—H7B	109.5	C46—C41—C9	120.6 (5)
Si—C7—H7C	109.5	C41—C42—C43	121.1 (7)
H7A—C7—H7C	109.5	C41—C42—H42A	119.4
Н7В—С7—Н7С	109.5	C43—C42—H42A	119.4
O3—C8—C11	108.6 (4)	C44—C43—C42	121.0 (8)
O3—C8—C21	107.9 (4)	C44—C43—H43A	119.5
C11—C8—C21	110.1 (4)	C42—C43—H43A	119.5
O3—C8—C2	106.7 (4)	C43—C44—C45	118.5 (8)
C11—C8—C2	112.0 (4)	C43—C44—H44A	120.7
C21—C8—C2	111.4 (4)	C45—C44—H44A	120.7
O4—C9—C31	109.0 (4)	C44—C45—C46	120.9 (8)
O4—C9—C41	106.4 (4)	C44—C45—H45A	119.5
C31—C9—C41	110.1 (4)	C46—C45—H45A	119.5
O4—C9—C1	107.8 (4)	C45—C46—C41	120.5 (7)
C31—C9—C1	111.5 (4)	C45—C46—H46A	119.8
C41—C9—C1	111.9 (4)	C41—C46—H46A	119.8
C12—C11—C16	117.8 (5)		
O4—Si—O3—C8	-51.4 (4)	C11—C12—C13—C14	0.3 (10)
C6—Si—O3—C8	66.3 (5)	C12—C13—C14—C15	-0.6 (10)
C7—Si—O3—C8	-171.5 (5)	C13-C14-C15-C16	-0.3 (10)
O3—Si—O4—C9	-24.8 (5)	C14—C15—C16—C11	1.4 (10)
C6—Si—O4—C9	-147.2 (5)	C12-C11-C16-C15	-1.7 (8)
C7—Si—O4—C9	90.8 (6)	C8—C11—C16—C15	179.5 (6)
C3—O2—C1—C2	-18.7 (6)	O3—C8—C21—C22	160.2 (5)
C3—O2—C1—C9	-142.8 (4)	C11—C8—C21—C22	41.9 (7)
C3—O1—C2—C1	-8.0 (5)	C2—C8—C21—C22	-83.0 (6)
C3—O1—C2—C8	-131.9 (5)	O3—C8—C21—C26	-20.4 (7)
O2—C1—C2—O1	16.2 (5)	C11—C8—C21—C26	-138.7 (5)
C9—C1—C2—O1	136.3 (4)	C2—C8—C21—C26	96.4 (6)
O2—C1—C2—C8	137.6 (4)	C26—C21—C22—C23	-2.5 (9)
C9—C1—C2—C8	-102.2 (5)	C8—C21—C22—C23	177.0 (6)
C2—O1—C3—O2	-3.2 (6)	C21—C22—C23—C24	0.5 (10)
C2—O1—C3—C4B	-136.1 (14)	C22—C23—C24—C25	1.2 (12)

C2—O1—C3—C4A	-108.4 (16)	C23—C24—C25—C26	-0.8 (12)
C2—O1—C3—C5	114.9 (5)	C24—C25—C26—C21	-1.1 (11)
C1—O2—C3—O1	14.3 (6)	C22—C21—C26—C25	2.7 (9)
C1—O2—C3—C4B	146.1 (13)	C8—C21—C26—C25	-176.7 (6)
C1—O2—C3—C4A	120.3 (16)	O4—C9—C31—C36	147.2 (5)
C1—O2—C3—C5	-104.3 (5)	C41—C9—C31—C36	-96.5 (6)
Si-O3-C8-C11	-77.0 (5)	C1—C9—C31—C36	28.4 (7)
Si-03-C8-C21	163.7 (3)	O4—C9—C31—C32	-36.3 (7)
Si-03-C8-C2	43.9 (5)	C41—C9—C31—C32	80.0 (6)
O1—C2—C8—O3	160.3 (4)	C1—C9—C31—C32	-155.2 (5)
C1—C2—C8—O3	42.1 (5)	C36—C31—C32—C33	-1.0 (9)
O1-C2-C8-C11	-81.0 (5)	C9—C31—C32—C33	-177.6 (6)
C1-C2-C8-C11	160.8 (4)	C31—C32—C33—C34	1.1 (11)
O1—C2—C8—C21	42.8 (6)	C32—C33—C34—C35	-0.8 (11)
C1—C2—C8—C21	-75.3 (5)	C33—C34—C35—C36	0.5 (10)
Si-04-C9-C31	-91.0 (5)	C34—C35—C36—C31	-0.5 (10)
Si-04-C9-C41	150.3 (4)	C32—C31—C36—C35	0.7 (9)
Si-04-C9-C1	30.1 (6)	C9—C31—C36—C35	177.2 (6)
O2—C1—C9—O4	161.0 (4)	O4—C9—C41—C42	-16.0 (6)
C2—C1—C9—O4	43.5 (6)	C31—C9—C41—C42	-133.9 (5)
O2—C1—C9—C31	-79.5 (5)	C1—C9—C41—C42	101.5 (6)
C2-C1-C9-C31	163.0 (4)	O4—C9—C41—C46	163.1 (5)
O2—C1—C9—C41	44.4 (6)	C31—C9—C41—C46	45.2 (7)
C2-C1-C9-C41	-73.1 (5)	C1—C9—C41—C46	-79.4 (6)
O3—C8—C11—C12	138.0 (5)	C46—C41—C42—C43	1.3 (9)
C21—C8—C11—C12	-104.1 (6)	C9—C41—C42—C43	-179.6 (6)
C2-C8-C11-C12	20.4 (7)	C41—C42—C43—C44	-0.9 (11)
O3—C8—C11—C16	-43.2 (6)	C42—C43—C44—C45	0.2 (12)
C21—C8—C11—C16	74.7 (6)	C43—C44—C45—C46	0.2 (11)
C2-C8-C11-C16	-160.8 (4)	C44—C45—C46—C41	0.2 (10)
C16-C11-C12-C13	0.8 (8)	C42—C41—C46—C45	-0.9 (9)
C8—C11—C12—C13	179.6 (6)	C9—C41—C46—C45	180.0 (6)

Fig. 2